Optimization of Central Receiver Concentrated Solar

نویسندگان

  • Alexander Mitsos
  • Corey J. Noone
چکیده

In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. Additionally, optimization of heliostat canting, is presented as an application of the heliostat layout optimization model. Using the site selection model, suitable sites are located based on heliostat field efficiency and average annual insolation. By iteratively defining the receiver location and evaluating the corresponding site efficiency, by sampling elevation data points from within the defined heliostat field boundary, efficiency can be mapped as a function of the receiver location. The case studies presented illustrate the use of the tool for two field configurations, both with ground-level receivers. The heliostat layout optimization model includes a detailed calculation of the annual average optical efficiency accounting for projection losses, shading & blocking, aberration and atmospheric attenuation. The model is based on a discretization of the heliostats and can be viewed as ray tracing with a carefully selected distribution of rays. The prototype implementation is sufficiently fast to allow for field optimization. In addition, inspired by the spirals of the phyllotaxis disc pattern, a new biomimetic placement heuristic is described and evaluated which generates layouts of both higher efficiency and better ground coverage than radially staggered designs. Case studies demonstrate that the new pattern achieves a better trade-off between land area usage and efficiency, i.e., it can reduce the area requirement significantly for any desired efficiency. Finally, heliostat canting is considered. Traditionally, canting has been parabolic, in which the focal point of the heliostat lies on the axis of symmetry. Two alternative off-axis canting methods are compared in this thesis, fixed facet (static) canting in which the facet alignment is optimized for a single design day and time and then rigidly mounted to the frame and dynamic canting in which the facets are actively controlled such that the center of each facet is always perfectly focusing. For both methods, two case studies are considered, a power tower with planar heliostat field and a hillside heliostat field which directs light down to a ground-level salt pond. Thesis Supervisor: Alexander Mitsos Title: Rockwell International Assistant Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid CSP/PV Receivers: Converting Optical Spillage to Electricity

This paper evaluates a novel receiver design concept that implements photovoltaic (PV) cells on heat shields and bellows shields to capture optical spillage from central receiver and parabolic trough concentrating solar power (CSP) plants, generating electricity from concentrated light that would otherwise be wasted. A combination of conventional silicon and multi-junction concentrating PV (CPV...

متن کامل

Open cavity receiver geometry influence on radiative losses

Open cavity receivers can be used to efficiently absorb concentrated solar radiation at high temperatures. Using ray-tracing and a stochastic optimisation method, the geometry of such receivers is optimised looking at radiative losses only. Results confirm the major role of the aperture in cavity losses mitigation and highlight the flux distribution variation on geometries with comparable radia...

متن کامل

Synthesis and Characterization of Mechanical Behavior and Thermal Shock Resistance of Macro-Porous SiC Solar Absorber

The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used ...

متن کامل

Tomography-Based Heat And Mass Transport Characterization Of Complex Porous Materials For Solar Power And Fuel Generation

Transport phenomena in porous media are pertinent to thermal and thermochemical processes for power and fuel generation using concentrated solar energy. The porous media serve as insulator, radiant absorbers, heat exchangers, catalyst carriers, reactants, and/or reaction sites. Volume-averaging models for porous media, commonly applied for process simulations and optimization, rely heavily on t...

متن کامل

Experimental Investigation of Thermal Performance in an Advanced Solar Collector with Spiral Tube

This paper reports the thermal performance of a new cylindrical solar collector based on an experimental investigation with this difference that instead of the collector tube with absorbent coating, coil into a spiral copper tube is placed in the center of the collector. The spiral shape of the tube, heat transfer without disruption or increase the heat transfer area, is increasing. In this cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012